
So�ware Development (cs2500)

Lecture 45: More Productivity with enums and Iterators

M.R.C. van Dongen

February 11, 2011

Contents
1 Outline 1

2 Improvement 2

3 Strategy Enums 3
3.1 A First Stab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2 Strategy Enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Using Attributes 6

5 Iterators 7
5.1 �e Iterable Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.2 �e Iterator Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.4 Annonymous Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.5 Using Annonymous Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 ForMonday 10

7 Acknowledgements 10

8 Bibliography 10

1 Outline
�is lecture studies strategy enums and Iterators. At the end it discusses anonymous classes. �e �rst part

of this lecture is based on [Bloch, 2008, Items 30–31]. �is includes examples. Some of this lecture is

based on the Java api documentation.

1



2 Improvement
Last Wednesday we implemented our Operation class as follows.

public enum Operation {
PLUS {

@Override
public String toString( ) { return "+"; }
@Override
public double apply( double x, double y ) { return x + y; }

}, MINUS {
@Override
public String toString( ) { return "-"; }
@Override
public double apply( double x, double y ) { return x - y; }

}, TIMES {
@Override
public String toString( ) { return "*"; }
@Override
public double apply( double x, double y ) { return x * y; }

}, DIVIDE {
@Override
public String toString( ) { return "/"; }
@Override
public double apply( double x, double y ) { return x / y; }

};

public abstract double apply( double first, double second );
}

Java

Looking back at it, we can see that it isn’t that pretty at all. �ere still is a lot of repetition in the

code: all overrides of toString( ) are identical (up to a symbol which is completely determined by the

Operator). �is suggests the symbol really should be an attribute of the Operator. By introducing this

attribute, we can replace all overrides by a single override, thereby improving the maintainability of the

code. �e following demonstrates the idea.

public enum Operation {
PLUS( "+" ) {

@Override
public double apply( double x, double y ) { return x + y; }

}, MINUS( "-" ) {
@Override
public double apply( double x, double y ) { return x - y; }

}, TIMES( "*" ) {
@Override
public double apply( double x, double y ) { return x * y; }

}, DIVIDE( "/" ) {
@Override
public double apply( double x, double y ) { return x / y; }

};
public abstract double apply( double first, double second );
private final String symbol;

Operation( String symbol ) {
this.symbol = symbol;

}

@Override public String toString( ) { return symbol; }
}

Java

2



3 Strategy Enums
In this section we shall study some more examples of speci�c behaviour for enum constants. We shall

start with a payroll example. �roughout the example we shall use doubles to represent money. �is isn’t

really a good idea because the rounding which you get with doubles is usually too much and makes the

results unreliable. Usually, it’s better to represent money (and other quantities which require an exact
representation) using objects which support arbitrary number precision. For example, we could use the

BigDecimal class. However, for the rest of this section we shall ignore this and represent our money with

doubles. If there’s time le�, we may study the BigDecimal class in some other lecture.

Our application computes the total pay of an employee for a given day based on their pay rate, and

the day of the week. �e following are the rules: Employees have a pay rate which depends on their

grade. Our application gets the pay rate as its input. �eir pay for a given day of the week is given by

pay= base pay+ overtime pay or that day .

�e base pay is given by pay rate× hours worked. �e overtime pay is given by

overtime pay= pay rate× overtime hours/2 .

�e overtime hours depend on the kind of day.

Weekdays: For a week day the overtime hours are the hours worked on that day in excess of 8 hours,

where 8 is the hours per shi�.

Weekend: For weekend days, the overtime hours are the hours worked on that day.

3.1 First Stab at Implementation
�at looks pretty simple. Many programmers may implement this as follows.

3



public enum SimplePayrollDay {
SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY;

private static final int HOURS_PER_SHIFT = 8;

public double pay( double hoursWorked, double payRate ) {
double basePay = hoursWorked * payRate;
double overtimePay = overtimePay( hoursWorked, payRate );

return basePay + overtimePay;
}

public double overtimePay( double hoursWorked, double payRate ) {
double overtime;

switch (this) {
case SATURDAY:
case SUNDAY: // Weekend

overtime = hoursWorked;
break;

default: // Weekday
double difference = hoursWorked - HOURS_PER_SHIFT;
overtime = (difference < 0 ? 0 : difference);

}
return overtime * payRate / 2;

}
}

Don’t Try this at Home

�ere’s not much wrong with this implementation at �rst sight. Again the problem is maintenance.

What if we add an extra type of day? For example, a Bank Holiday (special kind of Monday). We’d

have to change the implementation of overtimePay( ). �e application breaks if we forget to make the

change.

3.2 Strategy Enum to the Rescue
So, how do we �x the implementation? �e idea is that we want the compiler to help us if we forget to

make a change to the pay( ) computation. �e switch statement gives some clue. (�e kind of pattern

we’re looking for is similar to the pattern which we factored out at the start of this lecture.)

We need di�erent strategies for paying overtime. �is is di�erent from the strategy for toString( )
in the Operation class, which is the same for all instances of the class. Here, some strategies are shared,

but not all. Currently we have two kinds of strategies. �ey are determined by the kind of day: week

days, and weekend days. �e kind of day is a property of the day. A property can be implemented as an

attribute. By implementing the property as an attribute, the kind of day is determined by the attribute:

we can compute the kind of day from the attribute. �e kind of day determines the strategy. �erefore, the

attribute determines the strategy. We could implement our attribute as a boolean: isWeekday. �is would

work now, but, as always, the requirements may change. For example, what if we get double overtime for

hours worked on Christmas days? It is probably better to have a strategy which is based on an enum type.

�is strategy enum determines the strategy for computing overtime pay. (Of course we implement it as an

inner (enum) class.)

�e following is a possible implementation. Some of the details of the inner class PayType (an enum
class) are omitted. �ey are listed further on.

4



public enum PayrollDay {
SUNDAY( PayType.WEEKEND ),
MONDAY( PayType.WEEKDAY ),
TUESDAY( PayType.WEEKDAY ),
WEDNESDAY( PayType.WEEKDAY ),
THURSDAY( PayType.WEEKDAY ),
FRIDAY( PayType.WEEKDAY ),
SATURDAY( PayType.WEEKEND );

private static final int HOURS_PER_SHIFT = 8;
private final PayType type;

PayrollDay( PayType type ) { this.type = type; }

public double pay( double hoursWorked, double payRate ) {
double basePay = hoursWorked * payRate;
double overtimePay = type.overtimePay( hoursWorked, payRate );

return basePay + overtimePay;
}

private enum PayType {
WEEKEND { /* omitted. */ }, WEEKDAY { /* omitted. */ };
public abstract
double overtimePay( double hoursWorked, double payRate );

}
}

Java

�e full details of the inner class are as follows.

private enum PayType {
WEEKEND {

@Override
public double overtimePay( double hoursWorked, double payRate ) {

return hoursWorked * payRate / 2;
}

}, WEEKDAY {
@Override
public double overtimePay( double hoursWorked, double payRate ) {

double difference = hoursWorked - HOURS_PER_SHIFT;
double overtime = (difference < 0 ? 0 : difference);
return overtime * payRate / 2;

}
};
public abstract
double overtimePay( double hoursWorked, double payRate );

}

Java

�is implementation is clearly better. �e overtime pay computation is what varies. �e strategy enum
isolates what varies. �is localises the code for computing the overtime pay. Localising the computation of

overtime has the advantage that a global change in the rules for computation may now be implemented

by a local change in the Java program. �e following demonstrates the advantages.

• It is easy to remove days and strategies by removing existing enum constants.

• It is now possible to change the computation for an existing strategy by making a local change to

the implementation of overtimePay( ) of that strategy.

• It is now easy to add new days for existing strategies. �is may be done by making a local change to

the PayrollDay. All we need is adding a new PayrollDay constant.

5



• It is also easy to add new days for new strategies. Again this may be done by making local changes.

�is time we need to add a new PayrollDay constant and a new PayType strategy constant:

public enum PayrollDay {
…

BANK_HOLIDAY( PayType.BANK_HOLIDAY ),
…

private enum PayType {
…

BANK_HOLIDAY {
@Override
public double overtimePay( double hoursWorked, double payRate ) {

return hoursWorked * payRate;
}

…

}
}

Java

Notice that this example demonstrates the fact that enum classes have separate name spaces. Both enum
classes, PayrollDay and PayType, have a constant called BANK_HOLIDAY but there’s no possibility you can

ever mix them up.

4 Using Instance Attributes instead of Ordinals
�is section demonstrates that using the enum ordinal( ) method to implement a property may lead to

serious �aws in your programs. To understand the problem, consider the following code fragment.

public enum Ensemble {
SOLO, DUET, TRIO, QUARTET, QUINTET,
SEXTET, SEPTET, OCTET, NONET, DECTET;

public int size( ) { return 1 + ordinal( ); }
}

Don’t Try this at Home

�ere are several problems with this approach.

• �e �rst and most obvious problem is that if the order of the constants changes then the class will

break.

• �e class will also break if constants are removed (except if they’re the last constants).

• �e class also breaks if constants are added which create “holes”, e.g. if a constant is added for an

ensemble with 20 members.

• Finally, the class will break if enum constants are added for ensembles with same size as existing

ensembles, e.g. a double-quartet.

�e number of musicians is really a property which depends on the constants: it should be imple-

mented as an attribute. If we use this approach then we overcome all the previous disadvantages.

6



public enum Ensemble {
SOLO( 1 ), DUET( 2 ), TRIO( 3 ), QUARTET( 4 ),
QUINTET( 5 ), SEXTET( 6 ), SEPTET( 7 ), OCTET( 8 ),
DOUBLE_QUARTET( 8 ), NONET( 9 ), DECTET( 10 );
private final int size;

public int size( ) { return size; }
}

Java

�is solution solves all the problems with the previous approach.

• �is time the order of the constants can be changed without breaking the class.

• In addition constants can be removed without breaking the class.

• Likewise, the class remains to work if constants are added.

5 Iterators
�e ability to iterate over a collection of things is convenient. For example, using the generalised for-loop

we may write.

Type[] things = 〈magic〉;
for (Type thing : things) {
〈use thing〉

}

Java

Generalised for loops work for any kind of array.

Many classes from the Java collections also allow the notation.

ArrayList<Type> things = new ArrayList<Type>( );
〈magic〉;
for (Type thing : things) {
〈use thing〉

}

Java

But ArrayLists aren’t arrays. So how does this work? �e following section shows how.

5.1 �e Iterable Interface
�e ArrayList class implements the Iterable interface. To implement the interface you only have to

do one thing: override Iterator iterator( ). Iterator is a generic class, just like ArrayList, so it

is parameterised over a di�erent type which is written in angled brackets (’<’, and ’>’ a�er Iterator).

Suppose you write the following:

7



ArrayList<String> strings = 〈magic〉;
for (String str : strings) {

// Use string.
}

Java

Java translates this to:

ArrayList<String> strings = 〈magic〉;
Iterator<String> iterator = strings.iterator( );
while (iterator.hasNext( )) {

String string = iterator.next( );
// Use string.

}

Java

5.2 �e Iterator Interface
�e following are the public methods of the Iterator interface. �e E in the types below is the type of

the things “in” the Iterator, so if you write Iterator<String>, then E is equal to String.

boolean hasNext( ): Returns true if there are more elements.

E next( ): Returns the next element in the iteration.

void remove( ): Removes the last element returned by next( ). �is method is optional, i.e. there’s

no need to override it. �e contract of the Iterator class is that you can only have one call to

remove( ) ater the most recent call to next( ). �e idea is that you can only remove an object

from its current (next( )) position.

5.3 Implementing Iterable and Iterator

Let’s implement a naive class called DVDCollection which stores the names of dvd names which are

represented as a String. For simplicity we can only construct DVDCollection objects and iterate over

their underlying collection.

�e following are the main details of the class. �e details of the inner DVDIterator class are presented

in the following listing.

8



import java.util.Iterator;

public class DVDCollection implements Iterable<String> {
private String[] dvds;

public DVDCollection( String[] dvds ) {
this.dvds = dvds;

}

public Iterator<String> iterator( ) {
return new DVDIterator( );

}

private class DVDIterator implements Iterator<String> {
// Omitted

}
}

Java

�e following is the inner class.

private class DVDIterator implements Iterator<String> {
private int index = 0;

@Override
public boolean hasNext( ) {

return index < dvds.length;
}

@Override
public String next( ) {

return dvds[ index ++ ];
}

@Override
public void remove( ) {

String[] newDvds = new String[ dvds.length - 1 ];
for (int dest = 0; dest < index - 1; dest ++) {

newDvds[ dest ] = dvds[ dest ];
}
for (int source = index; source < dvds.length; source ++) {

newDvds[ source - 1 ] = dvds[ source ];
}
dvds = newDvds;

}
}

Java

5.4 Annonymous Classes
In our DVDCollection class the DVDIterator class was responsible for creating the Iterator. Java also

allows for a di�erent technique. �is involves an anonymous class.

�e following shows the technique. �e annonymous starts with the brace at the end of the line with

new and ends at the brace on the second-last line.

9



public Iterator<String> iterator( ) {
return new Iterator<String>( ) {

private int index = 0;
@Override
public boolean hasNext( ) {

return index < dvds.length;
}
@Override
public String next( ) {

return dvds[ index ++ ];
}
@Override
public void remove( ) {

String[] newDvds = new String[ dvds.length - 1 ];
for (int dest = 0; dest < index - 1; dest ++) {

newDvds[ dest ] = dvds[ dest ];
}
for (int source = index; source < dvds.length; source ++) {

newDvds[ source - 1 ] = dvds[ source ];
}
dvds = newDvds;

}
};

}

Java

5.5 Using Annonymous Classes
You may create an annonymous class anywhere where an expression is expected. However, annonymous

classes are more limited than ordinary classes. �ey don’t have a name. Annonymous classes can’t

implement multiple interfaces. �ey cannot simultaneously extend a class and implement an interface.

�ey cannot have new public methods. �ey can only override methods from their superclass or interface.

6 ForMonday
Study the lecture notes.

7 Acknowledgements
�e �rst part of this lecture is based on [Bloch, 2008, Items 30–31]. Some of this lecture is based on the

Java api documentation.

8 Bibliography

References
[Bloch, 2008] Joshua Bloch. E�ective Java. Addison–Wesley, 2008.

10


	Outline
	Improvement
	Strategy Enums
	A First Stab
	Strategy Enum

	Using Attributes
	Iterators
	The Iterable Interface
	The Iterator Interface
	Implementation
	Annonymous Classes
	Using Annonymous Classes

	For Monday
	Acknowledgements
	Bibliography

